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1. 

Axially moving string-like continua, such as threads, wires, magnetic tapes, belts,
band-saws, chains and cables, have been subjects for study by researchers in recent years;
see survey papers [1–3] for extensive lists of references. Researchers have derived and
studied different linear and non-linear mathematical models which describe the dynamics
of such systems; see, e.g., references [4–9]. Recently, the important problem of vibration
suppression of axially moving string-like continua has received attention by researchers;
see, e.g., references [10–15]. Most of the controllers, except that in reference [11], are
designed on the basis of linear models of axially moving strings. Our goal in this note is
to design a controller for a non-linear model of axially moving strings.

In this note, we consider the axially moving string in Figure 1. The string is pulled at
a constant speed through two eyelets, which are distanced from each other by one unit
of length. One of the eyelets is fixed and the other one can move freely in the direction
of the Y-axis. A control input force, denoted by u in Figure 1, can be applied to the
free-to-move eyelet transversally: i.e., in the direction of Y.

The dynamics of the string in Figure 1 can be represented by the following non-linear
partial differential equation (see, e.g., references [1, 4, 11]):

ytt (x, t)+2avyxt (x, t)= (1− a2v2 + 3
2by2

x(x, t))yxx (x, t), (1a)

for all x $ (0, 1) and te 0. In equation (1a), y( · , · )$R denotes the transversal
displacement of the string, yxM1y/1x, yxxM12y/1x2, yttM12y/1t2, yxtM12y/1x 1t, aq 0 and
bq 1 are constant real numbers, and vq 0 is proportional to the speed of the string
through the eyelets. In realistic physical situations, avQ 1.

The tension in the string represented by equation (1a) is not constant, and is given by

T(x, t)=1+ 1
2by2

x(x, t),

for all x $ [0, 1] and te 0 (see reference [16]). With the tension T, we have the following
boundary conditions:

y(0, t)=0, (1− a2v2 + 1
2by2

x(1, t))yx (1, t)= u(t), (1b, c)

for all te 0. The boundary condition in equation (1b) states that the string is fixed at
x=0. The boundary condition in equation (1c) represents the balance of forces applied
to the string at x=1 in the direction of Y.

The initial displacement and velocity of the string are, respectively,

y(x, 0)= f(x), yt (x, 0)= g(x), (1d)

for all x $ (0, 1), where ytM1y/1t. We assume that f $C1[0, 1], and that at least one of the
functions f and g is not identically zero over [0, 1].
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The control input u in equation (1c) is commonly known as the boundary control. In
this note, we study the stabilization of the string in equation (1a) by u. More precisely,
we study a u that results in y(x, t):0 as t:a for all x $ [0, 1]. As a stabilizing control
input, we propose

u(t)=−kyt (1, t), (2)

for all te 0, where kq 0 is a constant real number. With this choice of u, the boundary
control is the negative feedback of the transversal velocity of the string at x=1, with the
gain k. It is known that fixed linear strings represented by equations (1), in which v=0
and b=0, can be stabilized by the control law in equation (2); see, e.g., references [17–22].
Also, it is known that axially moving linear strings represented by equations (1), in which
vq 0 and b=0, can be stabilized by the control law in equation (2); see references [10, 13].
Roughly speaking, the boundary control in equation (2) provides a dissipative effect in
linear strings, because it is of the form of negative velocity feedback. This is in accordance
with the well known fact that the negative velocity feedback increases damping in most
finite dimensional inertial systems, such as large flexible systems and robotic manipulators.

Our goal in this note is to show that the boundary control u in equation (2) stabilizes
the non-linear axially moving non-linear string in equations (1), i.e., u results in y(x, t):0
as t:a for all x $ [0, 1]. To the best of our knowledge, no such result exists.

2.    

Our plan to establish the stability of the non-linear string represented by equations (1)
and (2) is as follows. We define an energy-like (Lyapunov) function of time for the string
and denote it by t � V(t). We show that V tends to zero exponentially.

We define the scalar-valued function V as

V(t)ME(t)+ g g
1

0

[xyt (x, t)yx (x, t)+ avxy2
x(x, t)] dx, (3)

for all te 0, where gq 0 is a constant real number,

E(t)M1
2 g

1

0

[ y2
t (x, t)+ (1− a2v2)y2

x(x, t)] dx+
b
8 g

1

0

y4
x(x, t) dx, (4)

Figure 1. The string is pulled at a constant speed through two eyelets. The eyelet at x=0 is fixed and the
one at x=1 can move freely in the direction of the Y-axis. The control input force u(t)=−kyt(1, t), for all
te 0, where kq 0 is a constant real number, is applied to the free-to-move eyelet in the direction of Y.
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and y( · , · ) satisfies equations (1) and (2). From equations (3), (4) and (1d), we obtain

E(0)= 1
2 g

1

0

[g2(x)+ (1− a2v2)f 2
x(x)] dx+

b
8 g

1

0

f 4
x(x) dx, (5a)

V(0)=E(0)+ g g
1

0

[xg(x)fx (x)+ avxf 2
x(x)] dx, (5b)

where fx (x)Mdf(x)/dx. Since at least one of the functions f and g is not identically zero
over [0, 1], we have E(0)q 0.

Now, we prove a property of V.

Lemma 2.1. Let g in equation (3) satisfy

gQ 1− a2v2

1+2av
. (6)

Then, the function V satisfies

0EK1E(t)EV(t)EK2E(t), (7)

for all te 0, where K1 q 0 and K2 q 0 are constant real numbers, given by

K1 =1−
g(1+2av)
1− a2v2 , K2 =1+

g(1+2av)
1− a2v2 . (8a, b)

Proof. See Appendix A. q

Remarks. (1) Since (1+2av)/(1− a2v2)q 1 for all 0Q avQ 1, it is clear that g in
inequality (6) is less than 1.

(2) Let g satisfy inequality (6). Then, by inequality (7) and the fact that E(0)q 0, it is
concluded that V(0)q 0. q

Next, we substitute equation (2) into equation (1c) and rewrite the boundary conditions
as

y(0, t)=0, yx (1, t)=−
kyt (1, t)

1− a2v2 + 1
2by2

x(1, t)
, (9a, b)

for all te 0. We now prove some identities for the functions satisfying equations (9).

Lemma 2.2. let y( · , · ) satisfy the boundary conditions in equations (9). Then,

2 g
1

0

yxtyt dx= y2
t (1, t), g

1

0

( yxxyt + yxtyx ) dx=−
ky2

t (1, t)
1− a2v2 + 1

2by2
x(1, t)

, (10a, b)

g
1

0

(3yxxy2
xyt + y3

xyxt ) dx=−
k3y4

t (1, t)
[1− a2v2 + 1

2by2
x(1, t)]3

, (10c)
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g
1

0

xyxtyt dx= 1
2y

2
t (1, t)− 1

2 g
1

0

y2
t dx, (10d)

g
1

0

xyxxyx dx=
k2y2

t (1, t)
2[1− a2v2 + 1

2by2
x(1, t)]2

− 1
2 g

1

0

y2
x dx, (10e)

g
1

0

xyxxy3
x dx=

k4y4
t (1, t)

4[1− a2v2 + 1
2by2

x(1, t)]4
− 1

4 g
1

0

y4
x dx, (10f)

for all te 0.

Proof. See Appendix A. q

Next, we compute the time derivative of the function E.

Lemma 2.3. The time derivative of the function E in equation (4), along the solution
of the system (1a), (1c), and (9) (equivalently, the system (1) and (2)) satisfies

E� (t)=−avy2
t (1, t)−

k(1− a2v2)y2
t (1, t)

1− a2v2 + 1
2by2

x(1, t)
−

k3by4
t (1, t)

2[1− a2v2 + 1
2by2

x(1, t)]3
E 0, (11)

for all te 0.

Proof. See Appendix A. q

Using the preliminary results obtained thus far, we next prove that the functions V and
E tend to zero exponentially.

Theorem 2.4. Let g in equation (3) satisfy

gQmin 61− a2v2

1+2av
, 2av,

4(1− a2v2)
3k 7. (12)

Then, the functions V and E, along the solution of the system (1a), (1c) and (9)
(equivalently, the system (1) and (2)) satisfy

0EV(t)EV(0) e−gt/K2, 0EE(t)EV(0)
K1

e−gt/K2, (13a, b)

for all te 0, where K1 and K2 are given in equations (8).

Proof. From equation (3), we obtain

V� (t)=E� (t)+ g g
1

0

(xyttyx + xytyxt +2avxyxtyx ) dx, (14)

for all te 0. Substituting ytt from equation (1a) into equation (14), we obtain

V� (t)=E� (t)+ g g
1

0

[xyxtyt +(1− a2v2)xyxxyx + 3
2bxyxxy3

x] dx, (15)

for all te 0. Substituting equations (11), (10d), (10e) and (10f) into equation (15), we
obtain

V� (t)E−gE(t)−F(t), (16)
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for all te 0, where

F(t)M0av−
g

21y2
t (1, t)+01−

gk
2(1− a2v2)1 k(1− a2v2)y2

t (1, t)
1− a2v2 + 1

2by2
x(1, t)

+01−
3gk

4(1− a2v2)1 k3by4
t (1, t)

2[1− a2v2 + 1
2by2

x(1, t)]3
. (17)

From inequality (12), we have

gQmin 62av,
4(1− a2v2)

3k 7, (18)

by which we conclude that F(t)e 0 for all te 0. Using the non-negativeness of F in
inequality (16), we obtain

V� (t)E−gE(t), (19)

for all te 0. Also, from inequality (12), we conclude that inequality (6) and hence
inequality (7), hold. Using inequality (7) in inequality (19), we obtain the differential
inequality

V� (t)E−
g

K2
V(t), (20)

for all te 0, with the initial condition V(0) given in equation (5b). By a comparison
theorem given in references [23, p. 29] or [24, p. 30], we conclude that V in inequality (20)
satisfies V(t)EV(0) e−gt/K2 for all te 0. Note that, by inequality (7), we have V(t)e 0 for
all te 0. Thus, inequality (13a) holds. By inequalities (7) and (13a), we conclude that
inequality (13b) holds. q

Finally, we show that the boundary control u in equation (2) stabilizes the non-linear
string in equations (1).

Corollary 2.5. The solution of the system (1a), (1c) and (9) (equivalently, the system (1)
and (2)), y(x, t):0 as t:a for all x $ [0, 1].

Proof. For the system (1a), (1c) and (9), we choose the Lyapunov function V in equation
(3), and let g in equation (3) satisfy inequality (12). Then, by Theorem 2.4, the function
E tends to zero exponentially. From equation (4), we conclude that yx (x, t):0 as t:a
for all x $ [0, 1]. Since y(0, t)=0 for all te 0, we conclude that y(x, t):0 as t:a, for
all x $ [0, 1]. q

3. 

In this note, we have proved that the non-linear axially moving string represented by
equations (1) can be stabilized by the linear boundary control in equation (2). The
boundary control is the negative feedback of the transversal velocity of the string at one
end.
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 : 

A.1. Proof of Lemma 2.1.
For the integral terms in equation (3), the coefficient of which is g, we have (the argument

(x, t) of the functions is deleted)

g
1

0

xytyx dxEg
1

0

x =yt >yx = dxE 1
2 g

1

0

y2
t dx+ 1

2 g
1

0

y2
x dx, g

1

0

avxy2
x dxE av g

1

0

y2
x dx,

(A1a, b)



    151

for all te 0. Thus,

g
1

0

(xytyx + avxy2
x) dxE 1

2 g
1

0

y2
t dx+

1+2av
2(1− a2v2) g

1

0

(1− a2v2)y2
x dx, (A2)

for all te 0. Since

1+2av
1− a2v2 e 1, (A3)

for all 0Q avQ 1, we conclude that

g
1

0

(xytyx + avxy2
x) dxE 1+2av

1− a2v2 01
2 g

1

0

[ y2
t +(1− a2v2)y2

x] dx1E 1+2av
1− a2v2 E(t), (A4a)

for all te 0. Similarly, we obtain

g
1

0

(xytyx + avxy2
x) dxe −

1+2av
1− a2v2 E(t), (A4b)

for all te 0. Using equations (A4) in equation (3), we obtain equation (7). q

A.2. Proof of Lemma 2.2.
From equation (9a), we have yt (0, t)=0 for all te 0. Thus, we obtain

2 g
1

0

yxtyt dx=g
1

0

( y2
t )x dx= y2

t (1, t), (A5)

for all te 0. That is, equation (10a) holds.
Having yt (0, t)=0 for all te 0, we next obtain

g
1

0

( yxxyt + yxtyx ) dx=g
1

0

( yxyt )x dx= yx (1, t)yt (1, t), (A6)

for all ye 0. Using equation (9b) in equation (A6), we obtain equation (10b).

Having yt (0, t)=0 for all te 0, we next obtain

g
1

0

(3yxxy2
xyt + y3

xyxt ) dx=g
1

0

( y3
xyt )x dx= y3

x(1, t)yt (1, t), (A7)

for all te 0. Using equation (9b) in equation (A7), we obtain equation (10c).
Next, we write

g
1

0

xyxtyt dx= 1
2 g

1

0

(xy2
t )x dx− 1

2 g
1

0

y2
t dx, (A8)

for all te 0. Thus, equation (10d) follows.
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Next, we write

g
1

0

xyxxyx dx= 1
2 g

1

0

(xy2
x)x dx− 1

2 g
1

0

y2
x dx= 1

2y
2
x(1, t)− 1

2 g
1

0

y2
x dx, (A9)

for all te 0. Using equation (9b) in equation (A9), we obtain equation (10e).
Finally, we write

g
1

0

xyxxy3
x dx= 1

4 g
1

0

(xy4
x)x dx− 1

4 g
1

0

y4
x dx= 1

4y
4
x(1, t)− 1

4 g
1

0

y4
x dx, (A10)

for all te 0. Using equation (9b) in equation (A10), we obtain equation (10f). q

A.3. Proof of Lemma 2.3.
From equation (4), we obtain

E� (t)=g
1

0

[ yttyt +(1− a2v2)yxtyx ] dx+
b
2 g

1

0

yxty3
x dx, (A11)

for all te 0. Substituting ytt from equation (1a) into equation (A11), we obtain

E� (t)=−2av g
1

0

yxtyt dx+(1− a2v2) g
1

0

( yxxyt + yxtyx ) dx

+
b
2 g

1

0

(3yxxy2
xyt + y3

xyxt ) dx, (A12)

for all te 0. Using equations (10a), (10b) and (10c) in equation (A12), we obtain equation
(11). q


